An age-structured continuum model for myxobacteria

نویسندگان

  • Pierre Degond
  • Angelika Manhart
  • Hui Yu
چکیده

Myxobacteria are social bacteria, that can glide in 2D and form counter-propagating, interacting waves. Here we present a novel age-structured, continuous macroscopic model for the movement of myxobacteria. The derivation is based on microscopic interaction rules that can be formulated as a particle-based model and set within the SOH (Self-Organized Hydrodynamics) framework. The strength of this combined approach is that microscopic knowledge or data can be incorporated easily into the particle model, whilst the continuous model allows for easy numerical analysis of the different effects. However we found that the derived macroscopic model lacks a diffusion term in the density equations, which is necessary to control the number of waves, indicating that a higher order approximation during the derivation is crucial. Upon ad-hoc addition of the diffusion term, we found very good agreement between the age-structured model and the biology. In particular we analyzed the influence of a refractory (insensitivity) period following a reversal of movement. Our analysis reveals that the refractory period is not necessary for wave formation, but essential to wave synchronization, indicating separate molecular mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuum modeling of myxobacteria clustering

In this paper we develop a continuum theory of clustering in ensembles of self-propelled inelastically colliding rods with applications to collective dynamics of common gliding bacteria Myxococcus xanthus. A multiphase hydrodynamic model that couples densities of oriented and isotropic phases is described. This model is used for the analysis of an instability that leads to spontaneous formation...

متن کامل

A continuum model for nematic alignment of self-propelled particles

A continuum model for a population of self-propelled particles interacting through nematic alignment is derived from an individual-based model. The methodology consists of introducing a hydrodynamic scaling of the corresponding mean-field kinetic equation. The resulting perturbation problem is solved thanks to the concept of generalized collision invariants. It yields a hyperbolic but non-conse...

متن کامل

A Continuum Model For Stone-wales Defected Carbon Nanotubes

In this paper, a continuum model is proposed so that a Stone-Wales (SW) defected carbon nanotube (CNT) is replaced by an initial circumferential crack in a continuum cylindrical shell. For this purpose, the critical energy release rate and then the fracture toughness of a defected CNT are calculated using the results of an existing atomistic-based continuum finite element simulation. Finally, t...

متن کامل

Inelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method

This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...

متن کامل

Role of streams in myxobacteria aggregate formation.

Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017